993 resultados para DIAMETER FIBERS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influences of surfactants and medical drugs on the diameter size and uniformity of electrospun poly(L-lactic acid) (PLLA) fibers were examined by adding various surfactants (cationic, anionic, and nonionic) and typical drugs into the PLLA solution. Significant diameter reduction and uniformity improvement were observed. It was shown that the drugs were capsulated inside of the fibers and the drug release in the presence of proteinase K followed nearly zero-order kinetics due to the degradation of the PLLA fibers. Such ultrafine fiber mats containing drugs may find clinical applications in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flexible tubular structures fabricated from solution electrospun fibers are finding increasing use in tissue engineering applications. However it is difficult to control the deposition of fibers due to the chaotic nature of the solution electrospinning jet. By using non-conductive polymer melts instead of polymer solutions the path and collection of the fiber becomes predictable. In this work we demonstrate the melt electrospinning of polycaprolactone in a direct writing mode onto a rotating cylinder. This allows the design and fabrication of tubes using 20 μm diameter fibers with controllable micropatterns and mechanical properties. A key design parameter is the fiber winding angle, where it allows control over scaffold pore morphology (e.g. size, shape, number and porosity). Furthermore, the establishment of a finite element model as a predictive design tool is validated against mechanical testing results of melt electrospun tubes to show that a lesser winding angle provides improved mechanical response to uniaxial tension and compression. In addition, we show that melt electrospun tubes support the growth of three different cell types in vitro and are therefore promising scaffolds for tissue engineering applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study describes the influence of incubation temperature during initial development phase on the morphology and muscle growth characteristics in the pacu (Piaractus mesopotamicus). Pacu eggs were incubated at 25, 27, and 29 degreesC until hatching. After day 5, fish from each temperature were transferred to 5001 tanks. At hatching and after 5, 25, and 60 days, muscle samples were collected, some were frozen in liquid nitrogen and others fixed in 4% paraformaldehyde or 2.5% glutaraldehyde. These samples were used for morphological, histochemical, immunohistochemical, and morphometric analysis. At hatching, we observed a superficial monolayer of small diameter fibers, lying just beneath the skin surrounding several round cells. From day 5, we observed two distinct populations of muscle fibers distributed in two layers: (1) red-in a superficial region with aerobic activity, and following acid preincubation, high mATPase activity, and 2) white-with anaerobic activity, and following alkaline preincubation, high mATPase activity. Twenty-five days after hatching, an intermediate layer and cell proliferating zones could be seen in the dorsal fin muscle region, with intermediate characteristics. Throughout the experimental period, there was an increase in muscle mass due to new fiber recruitment in the cell proliferating zones and between the more differentiated fibers in red, intermediate, and white muscles. This was more obvious from day 25, and at 29 degreesC than at 25 and 27 degreesC. Fiber hypertrophy occurred from hatching to 60 days and was more evident from 5 to 25 days. The number of proliferating nuclei (PCNA-labelling) increased from hatching to 60 days, and was more obvious in the 29 degreesC group at 60 days. Our results show that at incubation temperatures of 25, 27 and 29 degreesC, hypertrophy was predominantly from hatching to 25 days, after that muscle growth by hyperplastic mechanism increased. The interaction of muscle hypertrophic and hyperplastic growth processes in the 29 degreesC group produced the largest fish at the end of the experiment. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present paper deals with the evaluation of morphological and morphometric alterations of slow-twist (I) and fast-twitch (II) fibers of rectus abdominis muscle of adult female dog during pregestational phase, at 30 and 60 days of pregnancy and at 30 days after the parturition. At the every phases, using the open biopsy technique, muscle samples were collected. The samples were plunged. Histological sections were cut in a microtome. For general morphology, some sections were stained with HE. Subsequent sections were reacted for myofibrillar ATPase (m-ATPase), after alkaline (pH 10.4) and acid (pH 4.4) pre-incubations, in order to identificate type I and II fibers. In the pre-gestational phase, muscle tissue revealed to be composed by fibers with different diameters, presenting polygonal outlines and one or more periphery nuclei. At 30 days of pregnancy, muscle fiber characteristics were similar. At 60 days, in addition to the existence of normal fibers, polymorphic and small diameter fibers were frequent. At 30 days after the parturation, the morphology of muscle fiber were similar to that observed in the pre-gestational phase. In the four phases, type II fiber diameters were lager than type I. The diameters of both fiber types showed a significant reduction in the 30 days phase and a significative increasing at 60 days. The expansion of the abdominal wall during the pregnancy represents a chronic stimulus, induced changes in the morphology and in the fiber type diameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three types of neuromuscular junctions were described in the extraocular muscles of the opossum. The present study demonstrates the three-dimensional characteristics of these neuromuscular junctions after HCl connective tissue digestion. Adult opossum of both sexes were used and the neuromuscular junctions of the extraocular muscles were examined after removal of the intramuscular connective tissue and basal layer. This material was examined with a scanning electron microscope. Two types of 'en plaque' neuromuscular junction were described: the continuous type revealed elongated and branched primary synaptic grooves separated from each other by sarcolemma protuberances with different sizes, and the discontinuous or punctiform type which presents very shallow and discontinuous grooves when compared with the former. The multiple neuromuscular junctions were observed as two or three junctions associated with the same muscular fiber. The multiple junctions were present in thin fibers (around 11 microm caliber); the en plaque junctions were associated with large diameter fibers (around 21 microm). This study confirms and reveals the detailed morphological characteristics of the three neuromuscular junction types previously described by transmission electron microscope in the extraocular muscles of opossum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the results of an experimental study aimed at improving the performance of actively Q-switched fiber lasers. Unlike generic design schemes employing photonic crystal fibers, largemodal diameter fibers or double-clad fibers, we demonstrate a high-power, actively Q-switched laser based on standard com- munication erbium doped fibers with peak irradiance beyond the state-of-the-art at 3.1 GW/cm2 . The laser had 2.2 kW peak power, 15.5 ns pulse duration and 36.8 µJ pulse energy. We have also investigated the dynamics of pulse generation and have success- fully suppressed pulse instabilities caused by backscattered laser emission reaching the pump laser diodes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mainstream electrical stimulation therapies, e.g., spinal cord stimulation (SCS) and deep brain stimulation, use pulse trains that are delivered at rates no higher than 200 Hz. In recent years, stimulation of nerve fibers using kilohertz-frequency (KHF) signals has received increased attention due to the potential to penetrate deeper in the tissue and to the ability to block conduction of action potentials. As well, there are a growing number of clinical applications that use KHF waveforms, including transcutaneous electrical stimulation (TES) for overactive bladder and SCS for chronic pain. However, there is a lack of fundamental understanding of the mechanisms of action of KHF stimulation. The goal of this research was to analyze quantitatively KHF neurostimulation.

We implemented a multilayer volume conductor model of TES including dispersion and capacitive effects, and we validated the model with in vitro measurements in a phantom constructed from dispersive materials. We quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. In addition, we performed in vivo experiments and applied direct stimulation to the sciatic nerve of cats and rats. We measured electromyogram and compound action potential activity evoked by pulses, TAMS and modified versions of TAMS in which we varied the amplitude of the carrier. Nerve fiber activation using TAMS showed no difference with respect to activation with conventional pulse for carrier frequencies of 20 kHz and higher, regardless the size of the carrier. Therefore, TAMS with carrier frequencies >20 kHz does not offer any advantage over conventional pulses, even with larger amplitudes of the carrier, and this has implications for design of waveforms for efficient and effective TES.

We developed a double cable model of a dorsal column (DC) fiber to quantify the responses of DC fibers to a novel KHF-SCS signal. We validated the model using in vivo recordings of the strength-duration relationship and the recovery cycle of single DC fibers. We coupled the fiber model to a model of SCS in human and applied the KHF-SCS signal to quantify thresholds for activation and conduction block for different fiber diameters at different locations in the DCs. Activation and block thresholds increased sharply as the fibers were placed deeper in the DCs, and decreased for larger diameter fibers. Activation thresholds were > 5 mA in all cases and up to five times higher than for conventional (~ 50 Hz) SCS. For fibers exhibiting persistent activation, the degree of synchronization of the firing activity to the KHF-SCS signal, as quantified using the vector strength, was low for a broad amplitude range, and the dissimilarity between the activities in pairs of fibers, as quantified using the spike time distance, was high and decreased for more closely positioned fibers. Conduction block thresholds were higher than 30 mA for all fiber diameters at any depth and well above the amplitudes used clinically (0.5 – 5 mA). KHF-SCS appears to activate few, large, superficial fibers, and the activated fibers fire asynchronously to the stimulation signal and to other activated fibers.

The outcomes of this work contribute to the understanding of KHF neurostimulation by establishing the importance of the tissue filtering properties on the distribution of potentials, assessing quantitatively the impact of KHF stimulation on nerve fiber excitation, and developing and validating a detailed model of a DC fiber to characterize the effects of KHF stimulation on DC axons. The results have implications for design of waveforms for efficient and effective nerve fiber stimulation in the peripheral and central nervous system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A recent model of the Single Fiber Analyzer 3001 (SIFAN3001) was firstly employed to obtain the single wool fiber diameter profiles (SfFDPs) at multiple orientations. The results showed that using SIFAN3001 to measure fiber diameter at four orientations for 50 single fibers randomly sub-sampled from each mid-side sample can produce average fiber diameter profiles (AS fFDPs) of fibers within staples. Within the testing regime used, the precision estimates for the total samples were ±1.3 µm for the mean fiber diameter of staples and 1.4 µm for the average fiber diameter of the AS fFDPs at each scanned step in the diameter profile. The mean diameter ratio (ellipticity) obtained from the four orientations was 1.08±0.01, confirming that the Merino wool fibers under review were elliptical rather than circular. The elliptical morphology of wool fibers and the precision of the fiber diameter measurement at each point along a fiber will be considered in the development of a mechanical model of Staple Strength testing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cross-section area of animal fibers varies along the fiber length, and this geometrical irregularity has a major impact on the mechanical properties of those fibers. In practice fibers are often subjected to tensile stresses during processing and application, which may change fiber cross-section area. It is thus necessary to examine geometrical irregularity of fibers under tension. In this study, scoured animal fibers were subjected to different tensile loading using a Single Fiber Analyzer (SIFAN) instrument. The 3D images of the fiber specimens were first constructed, and then along-fiber diameter irregularities of the specimens were analyzed for different levels of tensile loading. The changes in effective fineness of the fiber specimens were also discussed. The results indicate that for the wool fibers examined, there is considerable discrepancy in the fiber diameter results obtained from the commonly used single scan along fiber length and that from multiple scans at different rotational angles, and that the diameter variation along fiber length increases as fiber tension increases. The results also show that when diameter reduction treatments are applied to wool by stretching, the reduced average fiber diameter is associated with an increase in both within-fiber and between-fiber diameter variations. So in terms of effective fineness, the change is much smaller than the difference between the average diameters of the parent and treated wool. These results have significant implications for improving the accuracy of fiber diameter measurement and evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructure optical fibers with flat-top fundamental mode are first proposed by introducing a low-index inner core into the core of index-guiding microstructure optical fibers. The design guidelines and characteristics of beam-shaping microstructure optical fibers are demonstrated. The interrelationships of inner-core index with laser wavelength, air hole diameter and size of inner core are investigated. The influence of the relative size of inner core on the spatial profile of the fundamental mode is demonstrated. Moreover, sensitivity of the flat-top fundamental mode profile from the slight change of the optimum inner-core index value is studied. Starting from these results we deduce that it is possible to fabricate beam-shaping microstructure fibers with nowadays technique. (C) 2005 Elsevier B.V. All rights reserved.